Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitrogen speciation and transformations in fire-derived organic matter.

Identifieur interne : 000144 ( Main/Exploration ); précédent : 000143; suivant : 000145

Nitrogen speciation and transformations in fire-derived organic matter.

Auteurs : Dorisel Torres-Rojas [États-Unis] ; Rachel Hestrin [États-Unis] ; Dawit Solomon [États-Unis, Éthiopie] ; Adam W. Gillespie [Canada] ; James J. Dynes [Canada] ; Tom Z. Regier [Canada] ; Johannes Lehmann [États-Unis]

Source :

RBID : pubmed:32362680

Abstract

Vegetation fires are known to have broad geochemical effects on carbon (C) cycles in the Earth system, yet limited information is available for nitrogen (N). In this study, we evaluated how charring organic matter (OM) to pyrogenic OM (PyOM) altered the N molecular structure and affected subsequent C and N mineralization. Nitrogen near-edge X-ray absorption fine structure (NEXAFS) of uncharred OM, PyOM, PyOM toluene extract, and PyOM after toluene extraction were used to predict PyOM-C and -N mineralization potentials. PyOM was produced from three different plants (e.g. Maize-Zea mays L.; Ryegrass-Lollium perenne L.; and Willow-Salix viminalix L.) each with varying initial N contents at three pyrolysis temperatures (350, 500 and 700 °C). Mineralization of C and N was measured from incubations of uncharred OM and PyOM in a sand matrix for 256 days at 30 °C. As pyrolysis temperature increased from 350 to 700 °C, aromatic C[bond, double bond]N in 6-membered rings (putative) increased threefold. Aromatic C[bond, double bond]N in 6-membered oxygenated ring increased sevenfold, and quaternary aromatic N doubled. Initial uncharred OM-N content was positively correlated with the proportion of heterocyclic aromatic N in PyOM (R2 = 0.44; P < 0.0001; n = 42). A 55% increase of aromatic N heterocycles at high OM-N content, when compared to low OM-N content, suggests that higher concentrations of N favor the incorporation of N atoms into aromatic structures by overcoming the energy barrier associated with the electronic and atomic configuration of the C structure. A ten-fold increase of aromatic C[bond, double bond]N in 6-membered rings (putative) in PyOM (as proportion of all PyOM-N) decreased C mineralization by 87%, whereas total N contents and C:N ratios of PyOM had no effects on C mineralization of PyOM-C for both pyrolysis temperatures (for PyOM-350 °C, R2 = 0.15; P < 0.27; for PyOM-700 °C, R2 = 0.22; P < 0.21). Oxidized aromatic N in PyOM toluene extracts correlated with higher C mineralization, whereas aromatic N in 6-membered heterocycles correlated with reduced C mineralization (R2 = 0.56; P = 0.001; n = 100). Similarly, aromatic N in 6-membered heterocycles in PyOM remaining after toluene extraction reduced PyOM-C mineralization (R2 = 0.49; P = 0.0006; n = 100). PyOM-C mineralization increased when N atoms were located at the edge of the C network in the form of oxidized N functionalities or when more N was found in PyOM toluene extracts and was more accessible to microbial oxidation. These results confirm the hypothesis that C persistence of fire-derived OM is significantly affected by its molecular N structure and the presented quantitative structure-activity relationship can be utilized for predictive modeling purposes.

DOI: 10.1016/j.gca.2020.02.034
PubMed: 32362680
PubMed Central: PMC7171705


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitrogen speciation and transformations in fire-derived organic matter.</title>
<author>
<name sortKey="Torres Rojas, Dorisel" sort="Torres Rojas, Dorisel" uniqKey="Torres Rojas D" first="Dorisel" last="Torres-Rojas">Dorisel Torres-Rojas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hestrin, Rachel" sort="Hestrin, Rachel" uniqKey="Hestrin R" first="Rachel" last="Hestrin">Rachel Hestrin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Solomon, Dawit" sort="Solomon, Dawit" uniqKey="Solomon D" first="Dawit" last="Solomon">Dawit Solomon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), P.O. Box 5689, Addis Ababa, Ethiopia.</nlm:affiliation>
<country xml:lang="fr">Éthiopie</country>
<wicri:regionArea>CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), P.O. Box 5689, Addis Ababa</wicri:regionArea>
<wicri:noRegion>Addis Ababa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gillespie, Adam W" sort="Gillespie, Adam W" uniqKey="Gillespie A" first="Adam W" last="Gillespie">Adam W. Gillespie</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Environmental Sciences, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dynes, James J" sort="Dynes, James J" uniqKey="Dynes J" first="James J" last="Dynes">James J. Dynes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Light Source Inc., Saskatoon, SK, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Light Source Inc., Saskatoon, SK</wicri:regionArea>
<wicri:noRegion>SK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Regier, Tom Z" sort="Regier, Tom Z" uniqKey="Regier T" first="Tom Z" last="Regier">Tom Z. Regier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Light Source Inc., Saskatoon, SK, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Light Source Inc., Saskatoon, SK</wicri:regionArea>
<wicri:noRegion>SK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lehmann, Johannes" sort="Lehmann, Johannes" uniqKey="Lehmann J" first="Johannes" last="Lehmann">Johannes Lehmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32362680</idno>
<idno type="pmid">32362680</idno>
<idno type="doi">10.1016/j.gca.2020.02.034</idno>
<idno type="pmc">PMC7171705</idno>
<idno type="wicri:Area/Main/Corpus">000186</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000186</idno>
<idno type="wicri:Area/Main/Curation">000186</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000186</idno>
<idno type="wicri:Area/Main/Exploration">000186</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitrogen speciation and transformations in fire-derived organic matter.</title>
<author>
<name sortKey="Torres Rojas, Dorisel" sort="Torres Rojas, Dorisel" uniqKey="Torres Rojas D" first="Dorisel" last="Torres-Rojas">Dorisel Torres-Rojas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hestrin, Rachel" sort="Hestrin, Rachel" uniqKey="Hestrin R" first="Rachel" last="Hestrin">Rachel Hestrin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Solomon, Dawit" sort="Solomon, Dawit" uniqKey="Solomon D" first="Dawit" last="Solomon">Dawit Solomon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), P.O. Box 5689, Addis Ababa, Ethiopia.</nlm:affiliation>
<country xml:lang="fr">Éthiopie</country>
<wicri:regionArea>CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), P.O. Box 5689, Addis Ababa</wicri:regionArea>
<wicri:noRegion>Addis Ababa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gillespie, Adam W" sort="Gillespie, Adam W" uniqKey="Gillespie A" first="Adam W" last="Gillespie">Adam W. Gillespie</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>School of Environmental Sciences, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dynes, James J" sort="Dynes, James J" uniqKey="Dynes J" first="James J" last="Dynes">James J. Dynes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Light Source Inc., Saskatoon, SK, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Light Source Inc., Saskatoon, SK</wicri:regionArea>
<wicri:noRegion>SK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Regier, Tom Z" sort="Regier, Tom Z" uniqKey="Regier T" first="Tom Z" last="Regier">Tom Z. Regier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Light Source Inc., Saskatoon, SK, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Light Source Inc., Saskatoon, SK</wicri:regionArea>
<wicri:noRegion>SK</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lehmann, Johannes" sort="Lehmann, Johannes" uniqKey="Lehmann J" first="Johannes" last="Lehmann">Johannes Lehmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Geochimica et cosmochimica acta</title>
<idno type="ISSN">0016-7037</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vegetation fires are known to have broad geochemical effects on carbon (C) cycles in the Earth system, yet limited information is available for nitrogen (N). In this study, we evaluated how charring organic matter (OM) to pyrogenic OM (PyOM) altered the N molecular structure and affected subsequent C and N mineralization. Nitrogen near-edge X-ray absorption fine structure (NEXAFS) of uncharred OM, PyOM, PyOM toluene extract, and PyOM after toluene extraction were used to predict PyOM-C and -N mineralization potentials. PyOM was produced from three different plants (e.g. Maize-
<i>Zea mays</i>
L.; Ryegrass-
<i>Lollium perenne</i>
L.; and Willow-
<i>Salix viminalix</i>
L.) each with varying initial N contents at three pyrolysis temperatures (350, 500 and 700 °C). Mineralization of C and N was measured from incubations of uncharred OM and PyOM in a sand matrix for 256 days at 30 °C. As pyrolysis temperature increased from 350 to 700 °C, aromatic C[bond, double bond]N in 6-membered rings (putative) increased threefold. Aromatic C[bond, double bond]N in 6-membered oxygenated ring increased sevenfold, and quaternary aromatic N doubled. Initial uncharred OM-N content was positively correlated with the proportion of heterocyclic aromatic N in PyOM (R
<sup>2</sup>
 = 0.44
<i>; P</i>
 < 0.0001; n = 42). A 55% increase of aromatic N heterocycles at high OM-N content, when compared to low OM-N content, suggests that higher concentrations of N favor the incorporation of N atoms into aromatic structures by overcoming the energy barrier associated with the electronic and atomic configuration of the C structure. A ten-fold increase of aromatic C[bond, double bond]N in 6-membered rings (putative) in PyOM (as proportion of all PyOM-N) decreased C mineralization by 87%, whereas total N contents and C:N ratios of PyOM had no effects on C mineralization of PyOM-C for both pyrolysis temperatures (for PyOM-350 °C, R
<sup>2</sup>
 = 0.15;
<i>P</i>
 < 0.27; for PyOM-700 °C, R
<sup>2</sup>
 = 0.22;
<i>P</i>
 < 0.21). Oxidized aromatic N in PyOM toluene extracts correlated with higher C mineralization, whereas aromatic N in 6-membered heterocycles correlated with reduced C mineralization (R
<sup>2</sup>
 = 0.56;
<i>P =</i>
 0.001; n = 100). Similarly, aromatic N in 6-membered heterocycles in PyOM remaining after toluene extraction reduced PyOM-C mineralization (R
<sup>2</sup>
 = 0.49;
<i>P</i>
 = 0.0006; n = 100). PyOM-C mineralization increased when N atoms were located at the edge of the C network in the form of oxidized N functionalities or when more N was found in PyOM toluene extracts and was more accessible to microbial oxidation. These results confirm the hypothesis that C persistence of fire-derived OM is significantly affected by its molecular N structure and the presented quantitative structure-activity relationship can be utilized for predictive modeling purposes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32362680</PMID>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0016-7037</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>276</Volume>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Geochimica et cosmochimica acta</Title>
<ISOAbbreviation>Geochim Cosmochim Acta</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitrogen speciation and transformations in fire-derived organic matter.</ArticleTitle>
<Pagination>
<MedlinePgn>170-185</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.gca.2020.02.034</ELocationID>
<Abstract>
<AbstractText>Vegetation fires are known to have broad geochemical effects on carbon (C) cycles in the Earth system, yet limited information is available for nitrogen (N). In this study, we evaluated how charring organic matter (OM) to pyrogenic OM (PyOM) altered the N molecular structure and affected subsequent C and N mineralization. Nitrogen near-edge X-ray absorption fine structure (NEXAFS) of uncharred OM, PyOM, PyOM toluene extract, and PyOM after toluene extraction were used to predict PyOM-C and -N mineralization potentials. PyOM was produced from three different plants (e.g. Maize-
<i>Zea mays</i>
L.; Ryegrass-
<i>Lollium perenne</i>
L.; and Willow-
<i>Salix viminalix</i>
L.) each with varying initial N contents at three pyrolysis temperatures (350, 500 and 700 °C). Mineralization of C and N was measured from incubations of uncharred OM and PyOM in a sand matrix for 256 days at 30 °C. As pyrolysis temperature increased from 350 to 700 °C, aromatic C[bond, double bond]N in 6-membered rings (putative) increased threefold. Aromatic C[bond, double bond]N in 6-membered oxygenated ring increased sevenfold, and quaternary aromatic N doubled. Initial uncharred OM-N content was positively correlated with the proportion of heterocyclic aromatic N in PyOM (R
<sup>2</sup>
 = 0.44
<i>; P</i>
 < 0.0001; n = 42). A 55% increase of aromatic N heterocycles at high OM-N content, when compared to low OM-N content, suggests that higher concentrations of N favor the incorporation of N atoms into aromatic structures by overcoming the energy barrier associated with the electronic and atomic configuration of the C structure. A ten-fold increase of aromatic C[bond, double bond]N in 6-membered rings (putative) in PyOM (as proportion of all PyOM-N) decreased C mineralization by 87%, whereas total N contents and C:N ratios of PyOM had no effects on C mineralization of PyOM-C for both pyrolysis temperatures (for PyOM-350 °C, R
<sup>2</sup>
 = 0.15;
<i>P</i>
 < 0.27; for PyOM-700 °C, R
<sup>2</sup>
 = 0.22;
<i>P</i>
 < 0.21). Oxidized aromatic N in PyOM toluene extracts correlated with higher C mineralization, whereas aromatic N in 6-membered heterocycles correlated with reduced C mineralization (R
<sup>2</sup>
 = 0.56;
<i>P =</i>
 0.001; n = 100). Similarly, aromatic N in 6-membered heterocycles in PyOM remaining after toluene extraction reduced PyOM-C mineralization (R
<sup>2</sup>
 = 0.49;
<i>P</i>
 = 0.0006; n = 100). PyOM-C mineralization increased when N atoms were located at the edge of the C network in the form of oxidized N functionalities or when more N was found in PyOM toluene extracts and was more accessible to microbial oxidation. These results confirm the hypothesis that C persistence of fire-derived OM is significantly affected by its molecular N structure and the presented quantitative structure-activity relationship can be utilized for predictive modeling purposes.</AbstractText>
<CopyrightInformation>© 2020 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Torres-Rojas</LastName>
<ForeName>Dorisel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hestrin</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Solomon</LastName>
<ForeName>Dawit</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), P.O. Box 5689, Addis Ababa, Ethiopia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gillespie</LastName>
<ForeName>Adam W</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dynes</LastName>
<ForeName>James J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Canadian Light Source Inc., Saskatoon, SK, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Regier</LastName>
<ForeName>Tom Z</ForeName>
<Initials>TZ</Initials>
<AffiliationInfo>
<Affiliation>Canadian Light Source Inc., Saskatoon, SK, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lehmann</LastName>
<ForeName>Johannes</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Geochim Cosmochim Acta</MedlineTA>
<NlmUniqueID>9876074</NlmUniqueID>
<ISSNLinking>0016-7037</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aromatic N heterocycles</Keyword>
<Keyword MajorTopicYN="N">Biochar</Keyword>
<Keyword MajorTopicYN="N">Fire</Keyword>
<Keyword MajorTopicYN="N">N content</Keyword>
<Keyword MajorTopicYN="N">NEXAFS</Keyword>
<Keyword MajorTopicYN="N">Organic C persistence</Keyword>
<Keyword MajorTopicYN="N">Pyrogenic organic N</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32362680</ArticleId>
<ArticleId IdType="doi">10.1016/j.gca.2020.02.034</ArticleId>
<ArticleId IdType="pii">S0016-7037(20)30157-5</ArticleId>
<ArticleId IdType="pmc">PMC7171705</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Phys Chem Chem Phys. 2015 Oct 7;17(37):23741-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26104737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2015 Dec 15;49(24):14057-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26523420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jan;176:106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25460990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2005 Apr 12;21(8):3400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 Feb 15;44(4):1247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20099810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2014 Dec 2;48(23):13727-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25361379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Aug;70(8):4621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2017 Jun 6;51(11):6570-6579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28489946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2011 Nov 18;1218(46):8443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21993510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Jul 21;132(28):9616-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20583786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Food Sci Nutr. 1994;34(4):321-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7945894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 May 1;44(9):3324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20384335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 21;6:28330</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Apr 3;46(7):4236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22439902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Nov;14(Pt 6):500-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17960033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 24;324(5926):481-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2000 Feb;87(2):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10663136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2004 Aug;30(6):855-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15120204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2016 Jan;22(1):76-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Nov 6;46(21):11770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2008 Sep;15(Pt 5):532-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18728328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2019 May 28;21(20):10773-10783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31086928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Oct 1;36(19):4107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12380082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
<li>Éthiopie</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Torres Rojas, Dorisel" sort="Torres Rojas, Dorisel" uniqKey="Torres Rojas D" first="Dorisel" last="Torres-Rojas">Dorisel Torres-Rojas</name>
</region>
<name sortKey="Hestrin, Rachel" sort="Hestrin, Rachel" uniqKey="Hestrin R" first="Rachel" last="Hestrin">Rachel Hestrin</name>
<name sortKey="Lehmann, Johannes" sort="Lehmann, Johannes" uniqKey="Lehmann J" first="Johannes" last="Lehmann">Johannes Lehmann</name>
<name sortKey="Lehmann, Johannes" sort="Lehmann, Johannes" uniqKey="Lehmann J" first="Johannes" last="Lehmann">Johannes Lehmann</name>
<name sortKey="Solomon, Dawit" sort="Solomon, Dawit" uniqKey="Solomon D" first="Dawit" last="Solomon">Dawit Solomon</name>
</country>
<country name="Éthiopie">
<noRegion>
<name sortKey="Solomon, Dawit" sort="Solomon, Dawit" uniqKey="Solomon D" first="Dawit" last="Solomon">Dawit Solomon</name>
</noRegion>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Gillespie, Adam W" sort="Gillespie, Adam W" uniqKey="Gillespie A" first="Adam W" last="Gillespie">Adam W. Gillespie</name>
</noRegion>
<name sortKey="Dynes, James J" sort="Dynes, James J" uniqKey="Dynes J" first="James J" last="Dynes">James J. Dynes</name>
<name sortKey="Regier, Tom Z" sort="Regier, Tom Z" uniqKey="Regier T" first="Tom Z" last="Regier">Tom Z. Regier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000144 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000144 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32362680
   |texte=   Nitrogen speciation and transformations in fire-derived organic matter.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32362680" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020